
Distribution Statement A
Approved for public release: distribution unlimited.

Systems Integration Plan
Advanced Distributed Learning

Enterprise Course Catalog Initial Operational Capability

8 March 2022

This work was supported by the U.S. Advanced Distributed Learning (ADL) Initiative
(FA701421F0184). The views and conclusions contained in this document are those

of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of the ADL Initiative or the U.S. Government. The U.S.

Government is authorized to reproduce and distribute reprints for Government purposes.

Standard Form 298 (Rev. 8/98)

REPORT DOCUMENTATION PAGE

Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

ECC Systems Integration Plan

i

Systems Integration Plan in Support of:

Advanced Distributed Learning

Enterprise Course Catalog Initial Operational Capability

Review periods. The Government will review and comment on each delivered data item within 10
business days of its receipt. The Contractor shall provide updates or resolutions to all comments within
10 business days of receiving the DIT to close out the deliverable.

ECC Systems Integration Plan

ii

Document Control Information

Document Name Systems Integration Plan

Client Advanced Distributed Learning (ADL) Initiative

Task Order Name Enterprise Course Catalog Initial Operating Capability

Document Owner Eric Flamer, Sam Schenkman, Michael Son (Deloitte Consulting LLP)

Document Version 1.1

Document Status Final

Document Edit History

Version Date Additions/Modifications Prepared/Revised by

1.0 12/22/2021 Draft submitted to ADL Deloitte

1.1 1/18/2022
Final submitted to ADL after original
feedback on draft

Deloitte

Distribution of Final Document
The following people are designated recipients of the final version of this document:

Name Organization/Title

Dr. Sae Schatz Contracting Officer Representative

Steve Faber Government Technical Point of Contact

Brent Smith Government Technical Lead

Trey Hayden Government Solution Engineer

ECC Systems Integration Plan

iii

Table of Contents

1.0 Introduction... 4

1.1 Deliverable Purpose .. 4

1.2 Deliverable Scope ... 4

2.0 ECC IOC Integration Plan and Strategy.. 5

2.1 ECC Overview.. 5

2.2 ECC IOC Deployment Strategy.. 10

2.3 System Integration Roles and Responsibilities... 11

2.4 Assumptions.. 11

3.0 ECC Integration Approach with Platform One Party Bus... 12

3.1 Experience Index Agent (XIA)... 12

3.2 Experience Index Service (XIS) ... 13

3.3 Experience Search Engine (XSE) ... 13

3.4 Experience Discovery Service (XDS) .. 13

3.5 Experience Management Service (XMS) ... 14

3.6 Experience Schema Service (XSS)... 14

3.7 ECC Conformance Alerting (Notifications) ... 15

3.8 ECC Automated Scheduling & Tasks... 15

4.0 Appendix.. 17

Appendix A - Hardware / Software .. 17

Appendix B - Deployment Scripts.. 18

Appendix B-1 Security, Networking, and Identity and Access Management 18

Appendix B-2 Deployment Scripts... 18

Appendix C: Key Terms ... 31

ECC Systems Integration Plan

4

1.0 Introduction

1.1 Deliverable Purpose

The Enterprise Course Catalog (ECC) is one of the three Enterprise Digital Learning
Modernization (EDLM) lines of effort supported by ADL. Today, course catalogs for the
Department of Defense (DoD) organizations are stored in disparate locations with inconsistent
data schemas which complicates the transport, management, consolidation, and governance of
the course catalogs across and within DoD organizations.

The goal of the ECC is to aggregate course catalog across multiple systems and organizations to
provide a centralized location for DoD personnel to view and interact with their learning and
development data. The aim of this document is to provide a summary overview of the ECC
Initial Operational Capability’s implementation, guidance on the required interfaces between the
ECC and the ADL Total Learning Architecture (TLA) reference implementation in an Amazon
Web Services (AWS) Platform One environment, a corresponding integration approach, and
stakeholder engagement strategy to support a reference implementation of the ECC Initial
Operational Capability (IOC).

The Deloitte Team, comprised of Deloitte practitioners and our Lingatech sub-contractors, will
perform system integration activities to successfully deploy ECC on Platform One in preparation
for an IOC test and evaluation period, which is expected to occur during the months of June and
July 2022. ECC IOC implementation efforts will begin within the DoD Platform One
environment starting in December 2021 and concluding in August 2022 after the completed
government acceptance testing activities. Beyond August 2022, ADL may continue to mature,
test, and harden the implemented ECC IOC in pursuit of the appropriate accreditations required
to support additional testing within stakeholder environments using live course data, which may
include integration with other DoD systems in preparation for the Full Operational Capability
(FOC).

1.2 Deliverable Scope

The scope of the ECC IOC Systems Integration Plan (SIP) is to provide technical guidance for
integrating ECC IOC with DoD organizations to extract, transform and load course metadata
within the Platform One Cloud environment. The intended audiences for this document are
developers or engineers who are familiar with TLA standards and core cloud computing
principles. Readers are not required to know all the details about each standard. However, some
knowledge of basic containerization concepts is advantageous for reading this document.
Readers should also have a fundamental understanding of how data is exchanged across the
internet including how to represent and exchange data using JavaScript Object Notation (JSON),
and how to access Representational State Transfer (REST) Application Programming Interfaces
(API) on the web.

ECC Systems Integration Plan

5

2.0 ECC IOC Integration Plan and Strategy

The following section outlines the core components of the ECC IOC, the ECC IOC deployment
approach, and integration strategy with target ADL TLA systems within the Platform One Cloud.
The ECC IOC consists of eight core components: Experience Discovery Service (Front and Back
End), Experience Management Service (Front and Back End), Experience Search Engine,
Experience Index Agent(s), Experience Index Service, Experience Schema Service. Components
are divided into three tiers: ECC Client Tier, ECC Application Tier, and ECC Data Tier. Refer to
Figure 1 below for visual representation. Components are defined as independently deployable
software services which, combined together, comprise the system. Components are made up of
one or more software packages, libraries, or modules, depending on the technology used to
construct the solution; component source code is typically modeled as a repository, although
packages, libraries, and modules are also often modeled as repositories as well. A detailed
description of the ECC IOC components is defined within Section 2.1.

The ECC IOC application deployment approach relies on repeatable, well-defined steps that
involve compiling code, building the application, conducting automated unit tests, provisioning
servers, and uploading code to Platform One GitLab. Our deployment approach is orchestrated
by a continuous integration / continuous delivery (CI/CD) pipeline. Leveraging the CI/CD
pipeline enables quicker releases and improves code quality resulting in less bugs following a
release. Refer to Section 2.2 for more detailed information on the ECC IOC deployment
approach.

2.1 ECC Overview

The ECC is designed to offer flexibility in connecting to multiple source catalogs. Once invoked,
the ECC Index Agents load the data into the Experience Index Service for a global search
capability of ingested courses. Once the data has been stored within the XIS, data is pushed to
Elasticsearch where high performance search engine is used to retrieve course data. Please refer
to Figure 2 below for a visual representation of the components and connections comprising the
ECC. While the figure depicts an AWS-hosted environment, the ECC can likely run on other
major cloud providers (e.g., Azure, Google Cloud Platform) or on-premise environments with
minor modifications.

ECC Systems Integration Plan

6

Figure 1 – ECC System Tiers

Figure 2 – ECC Infrastructure

ECC Systems Integration Plan

7

Tier 1 - ECC Presentation/Client

The ECC Presentation/Client layer represents the user-facing components of the ECC to enable
users to interact with the aggregated course catalog. The front-end offers views for Experience
Participant (Facilitator and Consumer), system operators, experience owners, and experience
managers with tailored data and role-based access control (RBAC). The ECC Presentation/client
layer consists of the following proposed components:

Experience Discovery Service – The Experience Discovery Service (XDS) is the
human-facing application enabling an Experience Consumer or Experience Facilitator to
easily locate a pertinent learning experience metadata record that has been indexed by the
Experience Index Service (XIS). Because the XDS is a separate application, it can be
deployed in a separate environment from the XIS, and can even be configured to point to
a different XIS as needed. In addition, multiple XDS applications can be deployed and
point to the same XIS, allowing for a great amount of installation and configuration
flexibility.

The Experience Discovery Service (XDS) focuses on enabling two main use cases:

o Direct Search: An Experience Consumer or Experience Facilitator interacts
directly with the XDS in order to locate one or more pertinent learning
experiences using search/browse features presented by the component.

o Indirect Search: An Experience Consumer or Experience Facilitator receives
communications asynchronously from the XDS in order to become aware of one
or more pertinent learning experiences.

Experience Management Service - The Experience Management Service is the human-
facing application enabling an Experience Owner or Experience Manager to modify or
augment a learning metadata record ingested by the Experience Index Service (XIS).
Because the XMS is a separate application, it can be deployed in a separate environment
from the XIS, and can even be configured to point to a different XIS as needed. In
addition, multiple XMS applications can be deployed and point to the same XIS,
allowing for a great amount of installation and configuration flexibility.

In addition to managing the XIS, the XMS also enables an Experience Owner to monitor
Experience Index Agent (XIA) operational health in order to identify problems with the
aggregation workflow.

Tier 2 - ECC Application Tier

The ECC Application Tier contains the functional process logic for the ECC IOC. This process
logic is critical in extracting, validating, transforming, validating, and loading the course
metadata from each source. Below is a description of the expected common services and how
they will be used for the ECC IOC:

Experience Index Agent – Experience Index Agents (XIA) are the lifeblood of the ECC
system. XIAs are purpose-built pieces of technology – network-based, independently-

ECC Systems Integration Plan

8

deployed software services – configured to work with a specific Experience Source
Repository (XSR).

Experience Index Agents are deployed within a containerized operating environment
such as Docker. XIA containers can be deployed in proximity to their designated
Experience Source Repository (XSR), for security and/or management reasons, or they
can be deployed within the ECC environment – or another environment entirely – and
connect to the configured target XSR over a network protocol. XIAs operate on a
defined/configured interval utilizing an internal scheduler. When the XIA is able to
connect to its corresponding XSR, it then executes the following workflow operations:

o Extract: XIAs pull pertinent learning experience metadata records from their
corresponding XSR, based on configuration.

o Validate: XIAs compare extracted learning experience metadata against the
configured standard XSR reference schema stored in the Experience Schema
Service (XSS)

o Transform: XIAs transform extracted learning experience metadata to the
configured target schema using the XSR-to-Target transformation stored in the
Experience Schema Service (XSS)

o Validate: XIAs compare transformed learning experience metadata against the
configured target XSR reference schema stored in the Experience Schema Service
(XSS)

o Load: XIAs push validated and transformed learning experience metadata to the
destination Experience Index Service (XIS) for downstream processing

o Log: XIAs log error, warning, informational, and debug events to a data store
which can be monitored.

Experience Index Service – The Experience Index Service (XIS) is the core of the
Enterprise Course Catalog solution. It is the central sink for learning experience
metadata collected by the Experience Index Agent (XIA) components. In addition, the
XIS can receive supplemental learning experience metadata – field name/value overrides
and augmentations – from the Experience Management Service (XMS).

Learning experience metadata is received from XIAs is stored in the Metadata Loading
Area and processed asynchronously in order to enhance overall system performance and
scalability. Processed metadata is combined with supplemental metadata provided by an
Experience Owner or Experience Manager and the "composite record" is stored in the
Metadata Repository. Metadata Repository record addition/modification events are
logged to a job queue and the metadata is then sent to the Experience Search Engine
(XSE) for indexing and high-performance location/retrieval.

It is possible for an XIS to syndicate its composite records to another XIS. The record set
can be filtered by one or more facets/dimensions in order to transmit a subset of the
overall composite record repository. In addition, the transmitted field set can be
configured to contain redacted values for specified fields when information is considered
too sensitive for syndication.

ECC Systems Integration Plan

9

Experience Search Engine – The Experience Search Engine (XSE) system component
is responsible for enabling fast identification and retrieval of learning experience
metadata records aggregated by the Experience Index Service (XIS). After being loaded
into one or more XSE indices, learning experience metadata records can be identified
specifically by identifier, or more broadly by a keyword and/or facet match.

Because search technology is generally a solved problem, the ECC project team will not
be implementing a custom service. Instead, the team will be utilizing Elasticsearch,
which is well-known for performance and scalability. Elasticsearch supports a variety of
features which should prove to be useful in the ECC solution, including search, faceting,
and percolation.

Tier 3 - ECC Data Tier

ECC data tier leverages Amazon Simple Storage Service (S3) and Amazon Relational Database
Service (RDS) in Platform One. S3 is a highly reliable, scalable, fault-tolerant, and secure object
storage system. Fault tolerance and availability of S3 buckets are managed by AWS. ECC will
leverage S3 buckets to store schema files for ECC components to extract, validate and transform
source metadata. ECC will leverage Amazon RDS MySQL for persistent data store and index
service data. RDS MySQL offers a highly scalable, reliable, fault-tolerant, and secure database.
RDS will be designed to fail over between availability zones that eliminates interruptions to the
database availability.

The ECC Data Tier contains the following components:

Experience Source Repositories (XSR) - Experience Source Repositories are the
primary data resources supporting the entire Enterprise Course Catalog solution. Without
the learning experience metadata extracted from the XSRs, the entire system would
depend on Experience Owners and Experience Managers to enter all of the metadata
manually. This would introduce an additional workload on top of the work they are
already performing to populate their own experience delivery systems and related catalog
services. ECC can extract data via scheduled file drops, direct connection to the source
database, upload data and connection to API endpoints. Source data can be in XML,
JSON, and CSV file formats when being extracted into ECC.

Experience Schema Service (XSS) - The Experience Schema Service maintains
referential representations of domain entities, as well as transformational mappings that
describe how to convert an entity from one particular schema representation to another.
The XSS is also responsible for storing schema mappings used by the XIA for source
metadata transformation and validation. Both metadata and supplemental metadata
ledgers get extracted from respective XSR repositories and transformed using the P2881
standards defined in the XSS. Figure 3 below represents ETL pipeline performed by XIA
using the XSS to validate the schema standards.

ECC Systems Integration Plan

10

Figure 3 – ECC ETL Pipeline

2.2 ECC IOC Deployment Strategy

The internal ECC IOC application leverages a robust CI/CD pipeline that enables quality and
secure application builds of the ECC. The CI/CD pipeline offers more consistency that the latest
versions of the ECC will operate as intended and to meet Platform guidelines within the US Air
Force’s Platform One Cloud environment. ECC IOC will be integrated with the Platform One
Gitlab CI/CD pipeline to help orchestrate the build, testing, and deploying applications to
Kubernetes. Code quality is achieved through SonarQube, performing static code analysis for the
ECC to catch errors within code prior to a deployment. Platform One CI/CD pipeline scans each
repository for a Dockerfile that meets compliance, unit tests using lint, static code analysis using
Fortify, Sonarqube and Trufflehog. Figure 4 provides a summary representation of each stage in
Platform One’s CI/CD process based on the standardized Platform One pipeline.

Figure 4 – ECC-Adopted Platform One CI/CD Pipeline for Party Bus Deployment

ECC Systems Integration Plan

11

2.3 System Integration Roles and Responsibilities

To support the deployment of the ECC IOC into the Platform One Cloud environment, the
following staffing plan, roles, and quantity are accounted for in Table 1 below.

Table 1 – ECC Integration Roles and Responsibilities

ECC IOC Role ECC IOC Responsibilities

Deloitte Team
Development Engineers

(x6)

Develop ECC code
Verify ECC code meets Platform One standards
Verify ECC code passed all analysis and quality checks to ensure pipeline is green
Update README files accordingly for deployment steps

Deloitte Team Testers

(x2)
Conducts ECC tests in the QA environment on Deloitte AWS sandbox and in
Platform One

Deloitte Team Project
Manager

(x1)

Manages scope and schedule as defined in the ECC technical management work
plan
Supports overall project functional activities, including stakeholder management,
risk and issue resolution, and stakeholder communications

ADL Engineers

Verify ADL EDLM code meets Platform One standards
Verify ADL EDLM code passed all analysis and quality checks to ensure pipeline
is green
Work with Deloitte Team Development Engineers to verify ECC IOC deployment
for ECC IOC Test and Evaluation activities.

Platform One DevOps
Engineers

Develop ECC pipelines matching ECC components for deployment to test, pre-
production, and production Platform One environments.
Verify ECC code passed all analysis and quality checks to ensure the pipeline is
green.
Work with Deloitte Team and ADL Engineers to troubleshoot deployment and
integration error within the Platform One environments.

2.4 Assumptions

In relation to the guidance provided within the ECC IOC SIP, the following assumptions have
been made within Table 2 below.

Table 2 – ECC IOC SIP Assumptions

Assumption Rationale

Development will rely on
Platform One’s DevOps
processes to successfully
deploy ECC

ECC Development team will work closely with the Platform One DevOps team to integrate
ECC with Platform One’s Cloud environment. Development team will be responsible of
keeping the CI/CD pipeline green through various quality & security checks. To the extent
needed, Deloitte will update this SIP deliverable to match the expected integration and
deployment practices established by Platform One for the ECC IOC.

ECC Systems Integration Plan

12

Assumption Rationale

Development Team will
have significantly limited
access to the Platform One
cloud environment after
code is pushed to Gitlab

Development team will have limited access/control of the deployment into AWS. All
deployment activities will be handled by Platform One’s DevOps team. To the extent
needed, Deloitte will update this SIP deliverable to match Platform One’s deployment
processes, workflows, and practices once our ECC pipelines are operational.

Development Team will
rely on Platform One to
confirm system integration
with ADL’s newly
deployed EDLM
systems/enclave

In the previous Operational Prototype development cycle, Deloitte relied on the ADL’s
TLA Sandbox environment for integration with other TLA components, allowing for a
greater degree of access/control via ADL. With Platform One, the assumption above
relating to access impacts ADL's own control of its other planned pipeline deployments for
services that may impact the ECC IOC (specifically the xAPI Profile Server). Deloitte will
coordinate with ADL on the deployment and integration practices for these other systems
and update this SIP deliverable to match the expected integration steps with these other
EDLM systems.

3.0 ECC Integration Approach with Platform One Party Bus

The ECC IOC relies on connections to source repositories to extract, transform and load course
metadata. The four source repositories used during the prototype phase were Defense
Acquisition University (DAU), Air and Education Training Command (AETC), Joint Knowledge
Online (JKO) and an external source edX. The ECC communicates with the source repositories
via API endpoints or from an exported CSV/Excel file from the source provider. The ECC
development team will follow Platform One’s Dockerfile guidelines to deliver secure and
approved containers. Dockerfiles will be limited to non-root users in the scripts. The base image
in each Dockerfile will be pointing to a hardened container in Registry One’s repository. Even in
multi-stage Dockerfiles, the team will ensure hardened containers are referenced.

3.1 Experience Index Agent (XIA)

The XIA is the data processing engine for the ECC. XIA agents are configured to connect to
source repositories, extract the data via an API endpoint or CSV. Once extracted, XIA agents
will automatically validate the extracted data, transform the data to the mapped data schema,
validate the transformed data, then load the data into XIS.

The identified system interfaces between an Authoritative XSR and XIA are depicted within
Table 3 below.

Table 3 – XIA System Interfaces

ECC
Component

Interfaces
Connection

Duration
Connection
Frequency

ECC XSR
API endpoint for XIA to connect and run ETL

on the data
Ephemeral On-demand

ECC XIA
Connects to Experience Source Repositories to

run ETL and map course data to the schema
Ephemeral On-demand

ECC Systems Integration Plan

13

3.2 Experience Index Service (XIS)

The XIS is the component that holds the transformed data from the XIAs. When data is loaded
from respective XIA agents, XIS validates the data against the XSS schema standards. Once data
is stored in the XIS, data is pushed to XSE (Elasticsearch). The XDS component retrieves user
queries directly from XSE and XMS component connect directly to XIS to retrieve detailed
course data and allow experience managers to make modifications to the metadata

The identified system interfaces between XIA, XIS, XSE and XMS are depicted within Table 4
below.

Table 4 – XIS System Interfaces

ECC Component Interfaces
Connection

Duration
Connection
Frequency

ECC XIS API Endpoint Ephemeral On-demand

ECC XIA API Endpoint Ephemeral On-demand

ECC XSE API Endpoint Ephemeral On-demand

ECC XMS API Endpoint Ephemeral On-demand

3.3 Experience Search Engine (XSE)

The XSE is the core search engine for ECC. Elasticsearch will handle indices, queries, and
highly available search capabilities for the users. Data is pushed from XIS which is then used to
retrieve queries from XDS.

The identified system interfaces between XSE, XDS, XIS are depicted within Table 5 below.

Table 5 – XSE System Interfaces

ECC Component Interfaces
Connection

Duration
Connection
Frequency

ECC XSE API Endpoint Ephemeral On-demand

ECC XIS API Endpoint Ephemeral On-demand

ECC XDS API Endpoint Ephemeral On-demand

3.4 Experience Discovery Service (XDS)

The XDS is the main interface for the users to interact with. This is where users will get the full
experience as experience participants (facilitator and consumer). XDS will interact with the XSE
component to retrieve queries, highlight course, save courses, and be taken directly to the course
provider.

The identified system interfaces between XDS, Users, XSE are depicted within Table 6 below.

ECC Systems Integration Plan

14

Table 6 – XDS System Interfaces

ECC Component Interfaces
Connection

Duration
Connection
Frequency

ECC XDS API Endpoint Ephemeral On-demand

Internet/Users HTTPS endpoint Ephemeral On-demand

ECC XSE API Endpoint Ephemeral On-demand

3.5 Experience Management Service (XMS)

The XMS is the management system where updates to the metadata can be made. Each
experience facilitator can be granted roles to the XMS that matches their line of organization to
modify the metadata for the organization’s preferences. XMS will connect directly with the XIS
to make these modifications.

Table 7 – XMS System Interfaces

ECC Component Interfaces
Connection

Duration
Connection
Frequency

ECC XDS API Endpoint Ephemeral On-demand

Internet/Users HTTPS endpoint Ephemeral On-demand

ECC XSE API Endpoint Ephemeral On-demand

3.6 Experience Schema Service (XSS)

The Experience Schema Service is meant to serve as the TLA component responsible for
managing pertinent object/record metadata schemas and the mappings for transforming records
from a source metadata schema to a target metadata schema. The ECC Development team has
developed a reference implementation of the schema service to support this linked data service
for the ECC solution. Global metadata registry along with interfaces for indexing services and
agents. This component will also be used to store and link vocabularies from stored schema. The
schema service is used to validate metadata against the defined metadata standards. XSS can be
used by other services as the global linked vocabulary service.

Table 8 – XSS System Interfaces

ECC Component Interfaces
Connection

Duration
Connection
Frequency

ECC XIA API Endpoint Ephemeral On-demand

Internet/Users HTTPS endpoint Ephemeral On-demand

ECC XIS API Endpoint Ephemeral On-demand

ECC Systems Integration Plan

15

3.7 ECC Conformance Alerting (Notifications)

The ECC conformance alerting/notification component feature is designed to send email
notifications to the system managers, system owners, and participants. Notifications will consist
of warnings/error trap reports or record updates automatically sent to subscribers. ECC
Conformance alerting is part of the automated scheduler celery tasks. The system operators can
add/remove subscribers from the Django admin page. System operators can also customize the
content of the email notifications. This component is an independently deployable PyPi package.

ECC conformance alerting consists of the configuration types below, which help System
Operators quickly configure and set up conformance alerting.

Sender Email Configurations: ECC OpenLXP-Notification package has the ability to
configure sender email. System Operator can choose an email address to send
conformance emails from.

Receiver Email Configurations: ECC OpenLXP-Notification package has the ability to
configure receiver email addresses. System Operators can add the list of email addresses
to send conformance alerts.

Notification Email Content: Conformance alert’s email body contents is easily editable.
System Operators can choose their own email body content. To learn more information
on the editing of the email body, please review the ECC team’s GitHub documentation
found here.

3.8 ECC Automated Scheduling & Tasks

The ECC ETL (Extract, Transform, Load) process is fully automated using Celery tasks in both
XIA and XIS components. In the XIA, Celery is used to extract, validate, transform, validate,
load, and validate the metadata before loading transformed data into the XIS. When the ETL
process is completed, celery runs a task to load data into the XIS and send notifications to
subscribed users. After the data is loaded into the XIS, celery tasks kick off in the XIS to
consolidate metadata ledgers and load the metadata into the XSE.

Automating these tasks eliminates manual work performed by the system operator. Hence to gain
better performance, ECC tasks run on a customizable schedule to minimize disruption. System
Operators can schedule daily, weekly, or monthly tasks in ECC. In the case of emergency
planning or meeting specific scheduling needs, system operators can choose to run tasks
manually by running an API. The parameters for scheduling the ECC automated tasks using
Celery tasks includes the following:

The System Operator can specify the Name for the task.

The System Operator can select the applicable tasks from the registered ECC tasks.

The System Operator can enable or disable the task scheduling by selecting or
unselecting the ‘Enabled’ option for each task.

ECC Systems Integration Plan

16

The System Operator can specify interval schedule, including the interval period and the
number of periods.

The System Operator can specify the Start Date Time for the scheduled task

The System Operator can enable or disable the task as a one-time action by selecting or
unselecting the ‘One-Off’ option for each task

ECC Systems Integration Plan

17

4.0 Appendix

Appendix A - Hardware / Software

ECC IOC Hardware

Table 9 – ECC Hardware

Component Service Operating System Count

XIA Kubernetes Docker 1

XIS Kubernetes Docker 1

XDS Kubernetes Docker 1

XDS-UI Kubernetes Docker 1

XMS Kubernetes Docker 1

XMS-UI Kubernetes Docker 1

XSE Kubernetes Docker 1

XSS Kubernetes Docker 1

ECC IOC Software

Table 10 – ECC Software

Configuration Item (CI) Name Version

Security / Authentication
KeyCloak 7.0.x

Django Administration 3.1.x

Application

Nginx 1.14.0

Elasticsearch 7.16

Django 3.1.x

React

Data / Storage RDS MySQL 13.1

Container Docker 20.10.x

Container Orchestration Kubernetes 1.19.x

Operating System Linux/Ubuntu 18.04

Administration Gitlab CICD

ECC Systems Integration Plan

18

Appendix B - Deployment Scripts

Appendix B-1 Security, Networking, and Identity and Access Management

The necessary firewall ports for ECC, based on the specified component/infrastructure, is
outlined within Table 11 below.

Table 11 – ECC Firewall Ports

Component Ports (Ingress) Ports (Egress)

Experience Index Agent (XIA)
:22 (per IP)
:443 Public
:8000 (per IP)

All Traffic

Experience Index Service (XIS)
:22 (per IP)
:443 Public
:8100 (per IP)

All Traffic

Experience Search Engine (XSE)
:22 (per IP)
:443 Public
:9200 (per IP)

All Traffic

Experience Schema Service
(XSS)

:22 (per IP)
:443 Public
:8080 (per IP)

All Traffic

Experience Discovery Service
(XDS)

:22 (per IP)
:443 (per IP)
:8000 (per IP)
:3000 (per IP)

All Traffic

Experience Management Service
(XMS)

:22 (per IP)
:443 Public
:8000 (per IP)
:3000 (per IP)

All Traffic

Appendix B-2 Deployment Scripts

ECC is deployed and integrated using microservices approach for each component. Although
some components rely on others for the data to be transformed and pushed into the global catalog
system, each component can be deployed independently. This allows for flexible configuration
modifications based on each organization’s requirements. The Experience Index Agent and
Notification components are python packages available on PyPi. Eventually, XIA and XIS
syndication will be implemented. Organizations will have the options to syndicate data into the
deployed ECC application or from ECC into a local index service. ECC allows any component to
be deployed individually and connect to/from the ADL deployed ECC.

Integration Use Case 1: Deploying an Experience Index Agent to Contribute to the ADL ECC IOC

Experience Index Agents are implemented using docker-compose. Experience Index Agents is
configurable to allow any organizations to connect to their source repository. This is done by
configurable API endpoints for the metadata within the XIA Django administration page.
Whether the new organization exports CSV files or has API endpoints integrated with their

ECC Systems Integration Plan

19

source repository, new source repositories can be added to OpenLXP. Docker-compose.yaml file
presented below is a generic representation of the ECC docker-compose file that can be
customized where <XSR> can be updated based on source repository.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

version: "3"

services:
 db_xia_<XSR>:
 image: mysql:5.7
 ports:
 - '3306:3306'
 environment:
 MYSQL_DATABASE: "${DB_NAME}"
 MYSQL_PASSWORD: "${DB_PASSWORD}"
 MYSQL_ROOT_PASSWORD: "${DB_ROOT_PASSWORD}"
 MYSQL_HOST: ''
 networks:
 - openlxp

 app_xia_<XSR>:
 build:
 context: .
 ports:
 - "8000:8020"
 command: >
 sh -c ". /opt/app/start-app.sh"
 environment:
 DB_NAME: "${DB_NAME}"
 DB_USER: "${DB_USER}"
 DB_PASSWORD: "${DB_PASSWORD}"
 DB_HOST: "${DB_HOST}"
 DJANGO_SUPERUSER_USERNAME: "${DJANGO_SUPERUSER_USERNAME}"
 DJANGO_SUPERUSER_PASSWORD: "${DJANGO_SUPERUSER_PASSWORD}"
 DJANGO_SUPERUSER_EMAIL: "${DJANGO_SUPERUSER_EMAIL}"
 BUCKET_NAME: "${BUCKET_NAME}"
 AWS_ACCESS_KEY_ID: "${AWS_ACCESS_KEY_ID}"
 AWS_SECRET_ACCESS_KEY: "${AWS_SECRET_ACCESS_KEY}"
 AWS_DEFAULT_REGION: "${AWS_DEFAULT_REGION}"
 REQUESTS_CA_BUNDLE: '/etc/ssl/certs/ca-certificates.pem'
 AWS_CA_BUNDLE: '/etc/ssl/certs/ca-certificates.pem'
 SECRET_KEY_VAL: "${SECRET_KEY_VAL}"
 LOG_PATH: "${LOG_PATH}"
 CELERY_BROKER_URL: "${CELERY_BROKER_URL}"

ECC Systems Integration Plan

20

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

 CELERY_RESULT_BACKEND: "${CELERY_RESULT_BACKEND}"
 volumes:
 - ./app:/opt/app/openlxp-xia-<XSR>
 depends_on:
 - db_xia_<XSR>
 networks:
 - openlxp

 redis:
 image: redis:alpine
 networks:
 - openlxp

 celery:
 build:
 context: .
 command: celery -A openlxp_xia_edx_project worker -l info --pool=solo
 volumes:
 - ./app:/opt/app/openlxp-xia-<XSR>
 environment:
 REQUESTS_CA_BUNDLE: '/etc/ssl/certs/ca-certificates.pem'
 AWS_CA_BUNDLE: '/etc/ssl/certs/ca-certificates.pem'
 env_file:
 - ./.env
 depends_on:
 - db_xia_<XSR>
 - redis
 - app_xia_<XSR>
 networks:
 - openlxp
 restart: on-failure

 celery-beat:
 build:
 context: .
 command: celery -A openlxp_xia_<XSR>_project beat --scheduler
django_celery_beat.schedulers:DatabaseScheduler --loglevel=info --
pidfile=/tmp/celerybeat.pid
 volumes:
 - ./app:/opt/app/openlxp-xia-<XSR>
 environment:
 REQUESTS_CA_BUNDLE: '/etc/ssl/certs/ca-certificates.pem'

ECC Systems Integration Plan

21

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101

 AWS_CA_BUNDLE: '/etc/ssl/certs/ca-certificates.pem'
 env_file:
 - ./.env
 depends_on:
 - db_xia_<XSR>
 - redis
 - app_xia_<XSR>
 networks:
 - openlxp
 restart: on-failure

 flower:
 image: mher/flower:0.9.7
 command: ["flower", "--broker=redis://redis:6379/0", "--port=8888"]
 ports:
 - 8888:8888
 networks:
 - openlxp

networks:
 openlxp:
 external: true

System Operators can use the current implementations of edX, JKO, DAU, and AETC
Experience Index Agents by pulling the code from below repositories. Each of these
implementations demonstrates a catalog contribution from a distributed system to the ADL’s
EDLM ECC deployment.

edX (https://github.com/OpenLXP/openlxp-xia-edx)
JKO (https://github.com/OpenLXP/openlxp-xia-jko)
DAU (https://github.com/OpenLXP/openlxp-xia-dau)
AETC (https://github.com/OpenLXP/openlxp-xia-aetc)

Integration Use Case 2: Deploying an Experience Index Service for Local Use of the Full ECC
Solution:

The Experience Index Service is implemented using docker-compose. Clone the XIS Github
repository and run ‘docker-compose up -d’. XIS component is developed to allow syndication
with other XIS components. System Operators can run their own XIS if they choose to. Whether
it is external to Platform One or internal, any organization can pull or push data into/from other
XIS components.

Location of XIS GitHub Repository: https://github.com/OpenLXP/openlxp-xis

ECC Systems Integration Plan

22

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

version: "3"

services:
 db_xis:
 image: mysql:5.7
 ports:
 - '3310:3306'
 environment:
 MYSQL_DATABASE: "${DB_NAME}"
MYSQL_USER: 'root'
 MYSQL_PASSWORD: "${DB_PASSWORD}"
 MYSQL_ROOT_PASSWORD: "${DB_ROOT_PASSWORD}"
 MYSQL_HOST: ''
 networks:
 - openlxp
 app_xis:
 container_name: openlxp-xis
 build:
 context: .
 ports:
 - "8080:8020"
 command: >
 sh -c ". /opt/app/start-app.sh"
 environment:
 DB_NAME: "${DB_NAME}"
 DB_USER: "${DB_USER}"
 DB_PASSWORD: "${DB_PASSWORD}"
 DB_HOST: "${DB_HOST}"
 DJANGO_SUPERUSER_USERNAME: "${DJANGO_SUPERUSER_USERNAME}"
 DJANGO_SUPERUSER_PASSWORD: "${DJANGO_SUPERUSER_PASSWORD}"
 DJANGO_SUPERUSER_EMAIL: "${DJANGO_SUPERUSER_EMAIL}"
 BUCKET_NAME: "${BUCKET_NAME}"
 AWS_ACCESS_KEY_ID: "${AWS_ACCESS_KEY_ID}"
 AWS_SECRET_ACCESS_KEY: "${AWS_SECRET_ACCESS_KEY}"
 AWS_DEFAULT_REGION: "${AWS_DEFAULT_REGION}"
 REQUESTS_CA_BUNDLE: '/etc/ssl/certs/ca-certificates.pem'
 AWS_CA_BUNDLE: '/etc/ssl/certs/ca-certificates.pem'
 SECRET_KEY_VAL: "${SECRET_KEY_VAL}"
 LOG_PATH: "${LOG_PATH}"
 CELERY_BROKER_URL: "${CELERY_BROKER_URL}"
 CELERY_RESULT_BACKEND: "${CELERY_RESULT_BACKEND}"
 volumes:

ECC Systems Integration Plan

23

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

 - ./app:/opt/app/openlxp-xis
 depends_on:
 - db_xis
 networks:
 - openlxp

 es01:
 image: docker.elastic.co/elasticsearch/elasticsearch:7.11.1
 container_name: es01
 environment:
 - discovery.type=single-node
 ulimits:
 memlock:
 soft: -1
 hard: -1
 volumes:
 - data01:/usr/share/elasticsearch/data
 ports:
 - 9200:9200
 - 9300:9300
 networks:
 - openlxp

 redis:
 image: redis:alpine
 networks:
 - openlxp

 celery:
 build:
 context: .
 command: celery -A openlxp_xis_project worker -l info --pool=solo
 volumes:
 - ./app:/opt/app/openlxp-xis
 environment:
 REQUESTS_CA_BUNDLE: '/etc/ssl/certs/ca-certificates.pem'
 AWS_CA_BUNDLE: '/etc/ssl/certs/ca-certificates.pem'
 env_file:
 - ./.env
 depends_on:
 - db_xis
 - redis

ECC Systems Integration Plan

24

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

 - app_xis
 networks:
 - openlxp
 restart: on-failure

 celery-beat:
 build:
 context: .
 command: celery -A openlxp_xis_project beat --scheduler
django_celery_beat.schedulers:DatabaseScheduler --loglevel=info --
pidfile=/tmp/celerybeat.pid
 volumes:
 - ./app:/opt/app/openlxp-xis
 environment:
 REQUESTS_CA_BUNDLE: '/etc/ssl/certs/ca-certificates.pem'
 AWS_CA_BUNDLE: '/etc/ssl/certs/ca-certificates.pem'
 env_file:
 - ./.env
 depends_on:
 - db_xis
 - redis
 - app_xis
 networks:
 - openlxp
 restart: on-failure

 flower:
 image: mher/flower:0.9.7
 command: ["flower", "--broker=redis://redis:6379/0", "--port=8888"]
 ports:
 - 5555:5555
 networks:
 - openlxp

volumes:
 data01:
 driver: local
networks:
 openlxp:
 external: true

ECC Systems Integration Plan

25

The Experience Search Engine is implemented using docker-compose. Clone the Github
repository and run ‘docker-compose up -d’. There are no additional configurations needed to set
up XSE for OpenLXP. Once the Elasticsearch instances are running, indices are created based on
configuration from the XIA component.

Location of XSE GitHub Repository: https://github.com/OpenLXP/openlxp-xse

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

version: '2.2'
services:

es01:
image: docker.elastic.co/elasticsearch/elasticsearch:7.16.2
container_name: es01
environment:

- node.name=es01
- cluster.name=es-docker-cluster
- discovery.seed_hosts=es02,es03
- cluster.initial_master_nodes=es01,es02,es03
- bootstrap.memory_lock=true

 - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
ulimits:

memlock:
soft: -1
hard: -1

volumes:
- data01:/usr/share/elasticsearch/data

ports:
- 9200:9200

networks:
- elastic

es02:
image: docker.elastic.co/elasticsearch/elasticsearch:7.16.2
container_name: es02
environment:

- node.name=es02
- cluster.name=es-docker-cluster
- discovery.seed_hosts=es01,es03
- cluster.initial_master_nodes=es01,es02,es03
- bootstrap.memory_lock=true
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"

ulimits:
memlock:

soft: -1
hard: -1

ECC Systems Integration Plan

26

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

volumes:
- data02:/usr/share/elasticsearch/data

networks:
- elastic

es03:
image: docker.elastic.co/elasticsearch/elasticsearch:7.16.2
container_name: es03
environment:

- node.name=es03
- cluster.name=es-docker-cluster
- discovery.seed_hosts=es01,es02
- cluster.initial_master_nodes=es01,es02,es03
- bootstrap.memory_lock=true
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"

ulimits:
memlock:

soft: -1
hard: -1

volumes:
- data03:/usr/share/elasticsearch/data

networks:
 - elastic

kib01:
image: docker.elastic.co/kibana/kibana:7.16.2
container_name: kib01
ports:

- 5601:5601
environment:

ELASTICSEARCH_URL: http://es01:9200
ELASTICSEARCH_HOSTS: '["http://es01:9200","http://es02:9200","http://e

s03:9200"]'
networks:

- elastic

volumes:
data01:

driver: local
data02:

driver: local
data03:

ECC Systems Integration Plan

27

80
81
82
83

driver: local

networks:
elastic:

driver: bridge

The Experience Discovery Service is implemented using docker-compose. Clone the Github
repositories and run ‘docker-compose up -d’ to launch both XDS and XDS-UI. System Operators
will configure the XDS component if there is a need to stand up their own discovery service UI.

Location of XDS GitHub Repository: (https://github.com/OpenLXP/openlxp-xds):

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

version: "3"

services:
 db:
 image: mysql:5.7
 ports:
 - '3306:3306'
 environment:
 MYSQL_DATABASE: "${DB_NAME}"
MYSQL_USER: 'root'
 MYSQL_PASSWORD: "${DB_PASSWORD}"
 MYSQL_ROOT_PASSWORD: "${DB_ROOT_PASSWORD}"
 MYSQL_HOST: ''
 networks:
 - openlxp

 app:
 container_name: openlxp-xds
 build:
 context: .
 ports:
 - "8100:8020"
 command: >
 sh -c ". /opt/app/start-app.sh"
 environment:
 DB_NAME: "${DB_NAME}"
 DB_USER: "${DB_USER}"
 DB_PASSWORD: "${DB_PASSWORD}"
 DB_HOST: "${DB_HOST}"
 DJANGO_SUPERUSER_USERNAME: "${DJANGO_SUPERUSER_USERNAME}"
 DJANGO_SUPERUSER_PASSWORD: "${DJANGO_SUPERUSER_PASSWORD}"
 DJANGO_SUPERUSER_EMAIL: "${DJANGO_SUPERUSER_EMAIL}"

ECC Systems Integration Plan

28

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

 AWS_ACCESS_KEY_ID: "${AWS_ACCESS_KEY_ID}"
 AWS_SECRET_ACCESS_KEY: "${AWS_SECRET_ACCESS_KEY}"
 AWS_DEFAULT_REGION: "${AWS_DEFAULT_REGION}"
 REQUESTS_CA_BUNDLE: '/etc/ssl/certs/ca-certificates.pem'
 AWS_CA_BUNDLE: '/etc/ssl/certs/ca-certificates.pem'
 SECRET_KEY_VAL: "${SECRET_KEY_VAL}"
 ES_HOST: "${ES_HOST}"
 ES_INDEX: "${ES_INDEX}"
 LOG_PATH: "${LOG_PATH}"
 ENTITY_ID: "${ENTITY_ID}"
 SP_PUBLIC_CERT: "${SP_PUBLIC_CERT}"
 SP_PRIVATE_KEY: "${SP_PRIVATE_KEY}"
 volumes:
 - ./app:/opt/app/openlxp-xds
 depends_on:
 - db
 networks:
 - openlxp

networks:
 openlxp:
 external: true

Location of XDS-UI GitHub Repository: https://github.com/OpenLXP/openlxp-xds-ui):

1
2
3
4
5
6
7
8
9

10
11
12

version: '3'
services:
 # list of containers to run
 nextjs:
 # pointing to the dockerfile locations
 build: ./
 nginx:
 # pointing to the dockerfile location in nginx/
 build: ./nginx
 ports:
 - 80:80
 - 443:443

The Experience Management Service is implemented using docker-compose. Use the docker-
compose file below to launch both XMS and XMS-UI. System Operators will configure the
XMS component if there is a need to stand up their own management service UI.

Location of XMS GitHub Repository: https://github.com/OpenLXP/openlxp-xms

ECC Systems Integration Plan

29

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

version: "3"

services:
 db:
 image: mysql:5.7
 ports:
 - '3306:3306'
 environment:
 MYSQL_DATABASE: "${DB_NAME}"
MYSQL_USER: 'root'
 MYSQL_PASSWORD: "${DB_PASSWORD}"
 MYSQL_ROOT_PASSWORD: "${DB_ROOT_PASSWORD}"
 MYSQL_HOST: ''
 networks:
 - openlxp

 app:
 container_name: openlxp-xms
 build:
 context: .
 ports:
 - "8000:8020"
 command: >
 sh -c ". /opt/app/start-app.sh"
 environment:

 DB_NAME: "${DB_NAME}"
 DB_USER: "${DB_USER}"
 DB_PASSWORD: "${DB_PASSWORD}"
 DB_HOST: "${DB_HOST}"
 DJANGO_SUPERUSER_USERNAME: "${DJANGO_SUPERUSER_USERNAME}"
 DJANGO_SUPERUSER_PASSWORD: "${DJANGO_SUPERUSER_PASSWORD}"
 DJANGO_SUPERUSER_EMAIL: "${DJANGO_SUPERUSER_EMAIL}"
 DATA_FILE_NAME: "${DATA_FILE_NAME}"
 SCHEMA_FILE: "${SCHEMA_FILE}"
 BUCKET_NAME: "${BUCKET_NAME}"
 UPLOAD_BUCKET_NAME: "${UPLOAD_BUCKET_NAME}"
 AWS_ACCESS_KEY_ID: "${AWS_ACCESS_KEY_ID}"
 AWS_SECRET_ACCESS_KEY: "${AWS_SECRET_ACCESS_KEY}"
 AWS_DEFAULT_REGION: "${AWS_DEFAULT_REGION}"
 REQUESTS_CA_BUNDLE: '/etc/ssl/certs/ca-certificates.pem'
 AWS_CA_BUNDLE: '/etc/ssl/certs/ca-certificates.pem'
 SECRET_KEY_VAL: "${SECRET_KEY_VAL}"

ECC Systems Integration Plan

30

43
44
45
46
47
48
49
50
51
52
53

 LOG_PATH: "${LOG_PATH}"
 volumes:
 - ./app:/opt/app/openlxp-xms
 depends_on:
 - db
 networks:
 - openlxp

networks:
 openlxp:
 external: true

Location of XMS-UI GitHub Repository: https://github.com/OpenLXP/openlxp-xms-ui

1
2
3
4
5
6
7
8
9

10
11
12

version: '3'
services:
 # list of containers to run
 nextjs:
 # pointing to the dockerfile locations
 build: ./
 nginx:
 # pointing to the dockerfile location in nginx/
 build: ./nginx
 ports:
 - 80:80
 - 443:443

Finally, the notifications implementation of the OpenLXP enables ECC users to receive
notifications from the application. This component is also configurable through the Django
administration page. Sender/receiver emails, notification body message, and attachment options
can be configured. This allows ECC users to be notified of any errors that occurred during the
metadata ETL process. OpenLXP notifications is packaged in PyPi to allow installation during
the container build of the XIA component. Below is the Github code repository for the
notifications.

Notifications: https://github.com/OpenLXP/openlxp-notifications

ECC Systems Integration Plan

31

Appendix C: Key Terms

Table 12 below summarizes the acronyms referenced in this document.

Table 7 – Acronyms

Acronym Term

ADL Advanced Distributed Learning

API Application Programming Interface

AWS Amazon Web Services

CI/CD Continuous Integration/Continuous Deployment

DoD Department of Defense

EC2 Elastic Compute Cloud

ECC Enterprise Course Catalog

EDLM Enterprise Digital Learning Modernization

EKS Elastic Kubernetes Service

IAC Infrastructure as Code

IAM Identity Access Management

IOC Initial Operating Capability

JSON JavaScript Object Notation

OAS OpenAPI Specification

SIP Systems Integration Plan

TCP Transmission Control Protocol

TLA Total Learner Architecture

UI User Interface

VM Virtual Machine

XDS Experience Discovery Service

XIA Experience Index Agent

XIS Experience Index Service

XMS Experience Management Service

XSE Experience Search Engine

ECC Systems Integration Plan

32

Acronym Term

XSS Experience Schema Service

YAML YAMLAin't Markup Language

